

 Navigation

 	
 index

 	
 next |

 	simS2E 0.0.1 documentation

Welcome to simS2E’s documentation!

Contents:

	Getting started
	System requirements

	Installing Docker for example simS2E pipeline

	Setting up the environment for simS2E

	Setting up Sphinx for documenting simS2E simulation

	FEL source simulation
	Introduction

	Data access

	Output data description

	Diagnostic (diagnostic_felsrc.py)

	Propagation, including optics
	Input data description

	Diagnostic (diagnostic.py)

	About WPG

	Photon Matter Interaction
	Input/Output data description

	Python script for HDF

	Coherent Diffraction
	Input/Output data description

	Diagnostic

	Scaling behaviour of SingFEL

	Orientation Determination
	Input/Output data description

	Diagnostics of reconstructed 3D diffraction volume

	Phasing
	Input/Output data description

[image: _images/protein_rsz.png]

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Chunhong Yoon.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	simS2E 0.0.1 documentation

Getting started

[image: ../_images/pmi_rsz.png]
simS2E is an implementation-agnostic framework that defines the data interfaces between the modules, i.e. Module A must output an hdf5 file that adheres to the simS2E interface which Module B is expecting to read in. Actual implementation of Modules A and B is up to the user. If you understand this concept, then you are ready to use simS2E. You will need to set up the environment for simS2E and if you have a module that you want to plug in, find out what data formats the input and output should be here:

http://sims2e.readthedocs.org/en/latest/docs/fel_source_simulation.html

If you would like to try running an example simS2E pipeline, then you need Docker installed on your machine.

System requirements

You will need at least 8GB RAM and 20GB of disk space.

Installing Docker for example simS2E pipeline

You do NOT need Docker for simS2E. You only need it for running the example simS2E pipeline that we provide. Docker is a new container technology (Think of it as a light-weight virtualbox) that can be run on your choice of OS. Instructions for installation can be found here:

https://docs.docker.com/installation/

Setting up the environment for simS2E

You need to clone the simS2E repository from GitHub into your local directory (I will refer to this directory as /host/path):

cd /host/path
git clone https://github.com/chuckie82/simS2E.git

You now have a copy of all the files/scripts in the sub-directories needed for simS2E:

/host/path/simS2E/workflow: Directory for run scripts
/host/path/simS2E/config: Directory for configuration files
/host/path/simS2E/data: Directory for reading/saving data
/host/path/simS2E/packages: Directory for installing software packages
/host/path/simS2E/modules: Directory for module specific scripts
/host/path/simS2E/tmp: Directory for storing temporary files
/host/path/simS2E/docs: Directory for online documentation

Go to the packages directory and run setup.sh. This will build all the packages as Docker containers; 1) FAST for FEL source, 2) WPG for optics, 3) pmi_demo for radiation damage to the sample, 4) SingFEL for diffraction patterns, 5) EMC for orientation recovery, and 6) DM for phase retrieval:

cd /host/path/simS2E/packages
./setup.sh

Now you are ready to run the simulation!!!

1) Let’s run the FEL source simulation using FAST:

docker run -it -v /host/path/simS2E:/simS2E fast:v0.1 /bin/bash

You are now inside the Docker container running bash on Ubuntu v14.04. The FAST package is installed under /home/packages and the simS2E directory is located under /simS2E.

Go to the workflow directory and run the example. This will generate a single FEL pulse:

cd /simS2E/workflow
./runFAST

This script runs master.sh which in turn runs master_fast.sh. All the simulation configuration is defined in /simS2E/config/config_sim_example. Let’s examine the configuration file:

nano /simS2E/config/config_sim_example

NUM_FELsource_OUT=1 means output 1 instance of the FEL pulse.
FELsource=ppFAST means use the FAST package.
FAST simulation parameters are defined under ###### ppFAST ######.

When the simulation is complete. Exit the docker container by typing “exit” or Contrl+D.
FELsource output hdf5 file will be in /host/path/simS2E/data/sim_example/FELsource. You can examine the hdf5 file by running:

h5ls -r /host/path/simS2E/data/sim_example/FELsource/FELsource_out_0000001.h5

Note that the output hdf5 names and fields conform to the specifications of the simS2E framework.

2) Let’s run the optics simulation using WPG:

docker run -it -v /host/path/simS2E:/simS2E wpg:v0.1 /bin/bash

You are now inside the Docker container running bash on Ubuntu v14.04. The WPG package is installed under /home/packages and the simS2E directory is located under /simS2E.

Go to the workflow directory and run the example. This will generate the FEL pulse that will hit the sample after propagating through the SPB/SFX beamline optics:

cd /simS2E/workflow
./runWPG

When the simulation is complete. Exit the docker container by typing “exit” or Contrl+D.
WPG output hdf5 file will be in /host/path/simS2E/data/sim_example/prop.

3) Let’s run the photon matter interaction simulation using PMI_DEMO:

docker run -it -v /host/path/simS2E:/simS2E pmi_demo:v0.1 /bin/bash

You are now inside the Docker container running bash on Ubuntu v14.04. The PMI_DEMO package is installed under /home/packages and the simS2E directory is located under /simS2E. Due to the license agreement, the PMI package is not available in this example simulation and demo version is used instead.

Go to the workflow directory and run the example. This will generate the scattering factors of the sample under going radiation damage over time:

cd /simS2E/workflow
./runPMI

The pdb file that specifies the initial atom positions and scattering factors is stored under /simS2E/data/sim_example/sample/sample.h5.
When the simulation is complete, exit the docker container by typing “exit” or Contrl+D.
PMI_DEMO output hdf5 file will be in /host/path/simS2E/data/sim_example/pmi.

4) Let’s run the diffraction simulation using SingFEL:

docker run -it -v /host/path/simS2E:/simS2E singfel:v0.1 /bin/bash

You are now inside the Docker container running bash on Ubuntu v14.04. The SingFEL package is installed under /home/packages and the simS2E directory is located under /simS2E.

Go to the workflow directory and run the example. This will generate the diffraction patterns of the sample under going radiation damage over time:

cd /simS2E/workflow
./runSingFEL

Let’s open the simulation configuration file again in /simS2E/config/config_sim_example. NUM_DIFFR_OUT=100 means generate 100 time evolution diffraction patterns. In order to run a meaningful simulation, try increasing this number to 50,000. DIFFR=singfel means use the SingFEL package. SingFEL parameters are defined under ###### SingFEL ######. When the simulation is complete, exit the docker container by typing “exit” or Contrl+D. SingFEL output hdf5 file will be in /host/path/simS2E/data/sim_example/pmi.

You can examine the hdf5 file by running:

cd /host/path/s2eDocs/modules/diffr
python diagnostic_singfel.py /host/path/simS2E/data/sim_example

You should observe two matplotlib plots: 1) photon field and 2) photon count. You may need to install h5py, matplotlib and numpy to run this script.

5) Let’s run the orientation recovery simulation using EMC:

docker run -it -v /host/path/simS2E:/simS2E emc:v0.1 /bin/bash

You are now inside the Docker container running bash on Ubuntu v14.04. The EMC package is installed under /home/packages and the simS2E directory is located under /simS2E.

Go to the workflow directory and run the example. This will generate the 3D diffraction volume after orientation recovery. Note that EMC may take many hours to converge to a solution. On my Linux box, it takes about a day:

cd /simS2E/workflow
./runEMC

Let’s open the simulation configuration file again in /simS2E/config/config_sim_example. ORIENT=EMC specifies the EMC algorithm for orientation recovery. The EMC parameters are defined under ###### EMC ######. When the simulation is complete, exit the docker container by typing “exit” or Contrl+D. EMC output hdf5 file will be in /host/path/simS2E/data/sim_example/orient.

6) Let’s run the phase retrieval simulation using DM:

docker run -it -v /host/path/simS2E:/simS2E dm:v0.1 /bin/bash

DM
You are now inside the Docker container running bash on Ubuntu v14.04. The DM package is installed under /home/packages and the simS2E directory is located under /simS2E.

Go to the workflow directory and run the example. This will generate the 3D electron density.:

cd /simS2E/workflow
./runDM

Let’s open the simulation configuration file again in /simS2E/config/config_sim_example. PHASE=DM specifies the Difference Map algorithm for phase retrieval. The DM parameters are defined under ###### DM ######. When the simulation is complete. Exit the docker container by typing “exit” or Contrl+D. DM output hdf5 file will be in /host/path/simS2E/data/sim_example/phase.

Setting up Sphinx for documenting simS2E simulation

You need clone the simS2E repository from GitHub:

git clone https://github.com/chuckie82/start-to-end.git

The index.rst is the master ReST for your project.

You may already have sphinx [http://sphinx.pocoo.org/]
installed – you can check by doing:

python -c 'import sphinx'

If that fails install the latest version with:

> sudo easy_install -U Sphinx

Let’s see if we can build our html:

make html

If you now open your favorite internet browser and type _build/html/index.html, you
should see the documentation website.

To update the document on the web, just push your changes:

git add *.rst
git commit -m "Update all documents"
git push -u origin master

That’s it! Now you are ready to

[image: ../_images/undulator_rsz.png]

 Copyright 2015, Chunhong Yoon.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	simS2E 0.0.1 documentation

 [image: ../_images/undulator_rsz.png]

FEL source simulation

Introduction

Documentation for FEL source simulation can be found on this page.

Data access

Data in archive can be exported using web browser. Initial FEL source can be downloaded from here:

FEL source web site [http://dcache-door-photon03.desy.de:2980/]

with authentication (xfel/desy account)

FEL source web site [https://dcache-door-photon03:2880/XFEL/2014/SIM/]

If you use this dataset, please acknowledge [SALDIN99].

	[SALDIN99]	
	
	Saldin, E. A. Schneidmiller, and M. V. Yurkov. Nucl. Instrum. and Methods, A(429):233, 1999.

Output data description

The output data is expected in hdf5 format, and the glossary can be found below. FEL source module is responsible for writing out in the format specified below.

FELsource_out_<7 digit ID>.h5 (Output HDF glossary)

	Field name
	Description
	Data type
	Units

	data/
	
	
	

	data/arrEhor
	Complex EM field written in 4D array, horizontal polarization
	Float
	

	data/arrEver
	Complex EM field written in 4D array, vertical polarization
	Float
	

	params/
	Parameters for wavefront propagation
	
	

	params/Mesh/nSlices
	Numbers of points vs photon energy/time for the pulse
	Int
	

	params/Mesh/nx
	Numbers of points, horizontal
	Int
	

	params/Mesh/ny
	Numbers of points, vertical
	Int
	

	params/Mesh/sliceMax
	Max value of time [s] or energy [ev] for pulse (fragment)
	Float
	s or ev

	params/Mesh/sliceMin
	Min value of time [s] or energy [ev] for pulse (fragment)
	Float
	s or ev

	params/Mesh/xMax
	Maximum of horizontal range
	Float
	m

	params/Mesh/xMin
	Minimum of horizontal range
	Float
	m

	params/Mesh/yMax
	Maximum of vertical range
	Float
	m

	params/Mesh/yMin
	Minimum of vertical range
	Float
	m

	params/Mesh/zCoord
	Longitudinal position, for FEL output data - length of active undulator
	
	m

	params/Rx
	Instantaneous horizontal wavefront radius
	Float
	m

	params/Ry
	Instantaneous vertical wavefront radius
	Float
	m

	params/dRx
	Error of wavefront horizontal radius
	Float
	m

	params/dRy
	Error of wavefront vertical radius
	Float
	m

	params/nval
	complex electric field nval==2
	Int
	

	params/photonEnergy
	Average photon energy
	Float
	ev

	params/wDomain
	Wavefront in time or frequency (photon energy) domain
	String
	

	params/wEFieldUnit
	Electric field units, {sqrt(W/mm^2) (time domain), arbitrary}
	String
	

	params/wFloatType
	Electric field numerical type
	String
	

	params/wSpace
	R-space or Q-space wavefront presentation
	String
	

	params/xCentre
	Horizontal transverse coordinates of wavefront instant ‘source center’
	Float
	m

	params/yCentre
	Vertical transverse coordinates of wavefront instant ‘source center’
	Float
	m

	history/parent/info/
	Information about input data
	
	

	history/parent/info/
contact
	Contact Information
	String
	

	history/parent/info/
data_description
	Description of FEL data
	String
	

	history/parent/info/
method_description
	Method description
	String
	

	history/parent/info/
package_version
	Package version
	String
	

	misc/
	Complimentary information
	
	

	history/parent/misc/
FAST2XY.DAT
	FELsource_params_FAST2XY.txt used for post-processing FAST output
	String
	

	history/parent/misc/
angular_distribution
	radial distribution of far field divergence
	Float
	

	history/parent/misc/
spot_size
	near field transverse FEL beam size (FWHM)
	Float
	

	history/parent/misc/
gain_curve
	gain curve, dependence of FEL pulse energy (column 2) from number
of working point (column 0) and active undulator length z[cm] (column 1)
	Float
	

	history/parent/misc/nzc
	number of working point defines active undulator length
	Int
	

	history/parent/misc/
temporal_struct
	FEL pulse temporal structure, instantaneous power P(tau)
	Float
	

	version
	hdf5 format version
	Float
	0.1

Diagnostic (diagnostic_felsrc.py)

Fig.1. Pulse irradiance XY map (number of photons per pixel), the title contains size of the pixel;

Fig.2. Pulse time structure, the title contains the pulse energy value.

 Copyright 2015, Chunhong Yoon.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	simS2E 0.0.1 documentation

 [image: ../_images/optics.png]

Propagation, including optics

Input data description

The input data is expected in hdf5 format, and the glossary can be found in the link below.

prop_out_<7 digit ID>.h5 (Output HDF glossary)

	Field name
	Description
	Data type
	Units

	data/
	
	
	

	data/arrEhor
	Complex EM field written in 4D array, horizontal polarization
	Float
	

	data/arrEver
	Complex EM field written in 4D array, vertical polarization
	Float
	

	params/
	Parameters for wavefront propagation
	
	

	params/Mesh/nSlices
	Numbers of points vs photon energy/time for the pulse
	Int
	

	params/Mesh/nx
	Numbers of points, horizontal
	Int
	

	params/Mesh/ny
	Numbers of points, vertical
	Int
	

	params/Mesh/qxMax
	Maximum of horizontal frequency (If params/wSpace is Q-space)
	
	1/m

	params/Mesh/qxMin
	Minimum of horizontal frequency (If params/wSpace is Q-space)
	
	1/m

	params/Mesh/qyMax
	Maximum of vertical frequency (If params/wSpace is Q-space)
	
	1/m

	params/Mesh/qyMin
	Minimum of vertical frequency (If params/wSpace is Q-space)
	
	1/m

	params/Mesh/sliceMax
	Max value of time [s] or energy [ev] for pulse (fragment)
	Float
	s or ev

	params/Mesh/sliceMin
	Min value of time [s] or energy [ev] for pulse (fragment)
	Float
	s or ev

	params/Mesh/xMax
	Maximum of horizontal range (If params/wSpace is R-space)
	Float
	m

	params/xMin
	Minimum of horizontal range (If params/wSpace is R-space)
	Float
	m

	params/yMax
	Maximum of vertical range (If params/wSpace is R-space)
	Float
	m

	params/yMin
	Minimum of vertical range (If params/wSpace is R-space)
	Float
	m

	params/zCoord
	Longitudinal position, for FEL output data - length of active undulator
	Float
	m

	params/beamline/printout
	(add description)
	
	

	params/Rx
	Instantaneous horizontal wavefront radius
	Float
	m

	params/Ry
	Instantaneous vertical wavefront radius
	Float
	m

	params/dRx
	Error of wavefront horizontal radius
	Float
	m

	params/dRy
	Error of wavefront horizontal radius
	Float
	m

	params/nval
	complex electric field nval==2
	Int
	

	params/photonEnergy
	Average photon energy
	Float
	ev

	params/wDomain
	Wavefront in time or frequency (photon energy) domain
	String
	

	params/wEFieldUnit
	Electric field units,
sqrt(Phot/s/0.1%BW/mm^2),
sqrt(W/mm^2) for time domain,
sqrt(J/eV/mm^2) for frequency domain
arbitrary
	String
	

	params/wFloatType
	Electric field numerical type
	String
	

	params/wSpace
	R-space or Q-space wavefront presentation
	String
	

	params/xCentre
	Horizontal transverse coordinates of wavefront instant ‘source center’
	Float
	m

	params/yCentre
	Vertical transverse coordinates of wavefront instant ‘source center’
	Float
	m

	info/
	
	
	

	info/package_version
	Package version
	
	

	info/contact
	Contact details of author
	
	

	info/data_description
	Short description of what the data is
	
	

	info/method_description
	Short description of what method was used to generate the data
	
	

	history
	Information about input data
	
	

	misc/
	Complimentary information
	
	

	misc/xFWHM
	FWHM belong x-axis
	Float
	m

	misc/yFWHM
	FWHM belong y-axis
	Float
	m

	version
	hdf5 format version
	Float
	0.1

Diagnostic (diagnostic.py)

Fig.1. Pulse irradiance XY map (number of photons per pixel), the title contains size of the pixel;

Fig.2. Plot of pulse time structure before and after propagating, the title contains the propagated pulse energy value.

About WPG

WPG, WaveProperGator is an interactive simulation framework for coherent X-ray wavefront propagation. WPG provides intuitive interface to the SRW library [https://github.com/ochubar/SRW]. The application examples oriented on European XFEL [http://www.xfel.eu/] design parameters.

Online documentation page [http://wpg.readthedocs.org]

 Copyright 2015, Chunhong Yoon.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	simS2E 0.0.1 documentation

 [image: ../_images/pmi_rsz.png]

Photon Matter Interaction

Input/Output data description

The input/output data is expected in hdf5 format, and the glossary can be found below. Photon matter interaction module is responsible for reading in and writing out in the format specified below.

pmi_out_<7 digit ID>.h5 (Output HDF glossary)

	Field name
	Description
	Data type
	Units

	data/
	
	
	

	data/snp_<7 digit index>/ff
	Atomic form factor in 2D array (number of unique ions x length of atomFormFactorQ)
	Float
	

	data/snp_<7 digit index>/halfQ
	Reciprocal space spanned by the atomic form factor in 1D array (number of samples of reciprocal q)
	Float
	1/Å

	data/snp_<7 digit index>/Nph
	Numbers of photons in the beam
	Int
	ph

	data/snp_<7 digit index>/r
	Atomic position in real space in 2D array (number of ions x 3D coordinates {x,y,z})
	Float
	

	data/snp_<7 digit index>/T
	List of unique ID numbers given to each atomFormFactor in 1D array (number of unique ions)
	Int
	

	data/snp_<7 digit index>/Z
	List of atomType present at atomPosition in 1D array (number of ions x number of frames)
	Int
	

	data/snp_<7 digit index>/xyz
	List of indices of ff for each atom in Z
	Int
	

	data/snp_<7 digit index>/Sq_halfQ
	Reciprocal space spanned by the Compton scattering in 1D array (number of samples of reciprocal q)
	Float
	1/Å

	data/snp_<7 digit index>/Sq_bound
	Compton scattering by bound electrons in 1D array (length of Sq_Q)
	Float
	

	data/snp_<7 digit index>/Sq_free
	Compton scattering by free electrons in 1D array (length of Sq_Q)
	Float
	

	history
	Information about input data
	
	

	history/parent/detail
	Details of the parent inclusing /data, /info, /misc, /params
	
	

	history/parent/parent
	Iteratively list parent modules
	
	

	info/
	
	
	

	info/package_version
	Package version
	
	

	info/contact
	Contact details of author
	
	

	info/data_description
	Short description of what the data is
	
	

	info/method_description
	Short description of what method was used to generate the data
	
	

	misc/
	Miscellaneous information
	
	

	params/
	Parameters used to run the module
	
	

	version
	hdf5 format version
	Float
	0.1

Python script for HDF

Script on bitbucket [https://bitbucket.org/chunhongyoon/s2e]

 Copyright 2015, Chunhong Yoon.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	simS2E 0.0.1 documentation

 [image: ../_images/detector_rsz.png]

Coherent Diffraction

Input/Output data description

The input/output data is expected in hdf5 format, and the glossary can be found below. Coherent diffraction module is responsible for reading in and writing out in the format specified below.

diffr_params_SingFEL (Input Parameter glossary)

	Field name
	Description
	DataType

	–input_dir
	Input directory where pmi_out files are stored
	String

	–output_dir
	Output directory where diffr_out files will be stored
	String

	–config_file
	Full path and filename of this file
	String

	-b
	Experimental beam file
	String

	-g
	Experimental geometry file
	String

	–uniformRotation
	Rotations are selected uniformly in given rotation space
	Int

	–calculateCompton
	Calculate Compton scattering in diffraction pattern
	Int

	–sliceInterval
	Interval to calculates diffraction
	Int

	–numSlices
	Number of time slices to use for calculating diffraction
	Int

	–pmiStartID
	Start ID of PMI trajectory
	Int

	–pmiEndID
	End ID of PMI trajectory
	Int

	–dpID
	Diffraction pattern index for current pmiID
	Int

	–numDP
	Number of diffraction patterns to generate per pmiID
	Int

	–USE_GPU
	Options to use GPU (1) or not (0)
	Int

	version
	SingFEL version
	0.1

diffr_out_<7 digit ID>.h5 (Output HDF glossary)

	Field name
	Description
	Data type
	Units

	data/
	
	
	

	data/data
	Diffraction pattern in 2D matrix
	Float
	

	data/diffr
	Diffracted intensity before Poisson noise (Optional)
	Float
	

	data/angle
	Additional rotation applied to the rotated pmi_out position.
Initial rotation angle can be found in pmi_out/data/angle.
Active right handed rotations applied in quaternion.
	Float
	

	history/
	Information about input data
	
	

	history/parent/detail
	Details of the parent including /data, /info, /misc, /params
/data should be soft-linked with a relative path
	
	

	history/parent/parent
	Iteratively list parent modules
	
	

	info/
	Information
	
	

	info/package_version
	Package name and version
	String
	

	info/contact
	Contact details of author
	String
	

	info/data_description
	Short description of what the data is
	String
	

	info/method_description
	Short description of what method was used to generate the data
	String
	

	misc/
	Miscellaneous information
	
	

	params/
	Parameters used for coherent diffraction
	
	

	params/geom/detectorDist
	Detector distance from point of interaction
	Float
	m

	params/geom/pixelWidth
	Pixel width
	Float
	m

	params/geom/pixelHeight
	Pixel height
	Float
	m

	params/geom/mask
	Mask of a diffraction pattern to indicate
	Int
	

	
	pixel ON (1) or OFF (0) in 2D array
	
	

	params/beam/photonEnergy
	Photon energy
	Float
	eV

	params/beam/photons
	Number of photons in the beam
	Int
	ph

	params/beam/focusArea
	Beam focus area
	Float
	

	params/info
	Input for Coherent diffraction program
	String
	

	version
	hdf5 format version
	Float
	0.1

Diagnostic

Python script displays /data/data and /data/diffr at completion of the module execution.

Scaling behaviour of SingFEL

Calculation time using single processor vs number of atoms is non-linear, perhaps quadratic.

Detector number of pixels: 131x131

Benzoic acid: 15 atoms
Chignolin: 2484 atoms
2YBE: 3240 atoms
2NIP: 4735 atoms
4AS4: 4963 atoms

[image: ../_images/singfel_speed.png]

 Copyright 2015, Chunhong Yoon.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	simS2E 0.0.1 documentation

 [image: ../_images/diffrVol_rsz.png]

Orientation Determination

Input/Output data description

Test

The input/output data is expected in hdf5 format, and the glossary can be found below. Orientation determination module is responsible for reading in and writing out in the format specified below.

orient_out_<7 digit ID>.h5 (Output HDF glossary)

	Field name
	Description
	Data type
	Units

	data/
	
	
	

	data/data
	Diffraction volume in 3D array (dimX x dimY x dimZ)
	Float
	

	data/angle
	Most likely orientation
	Float
	

	data/center
	center of diffraction volume x,y,z
	Int
	pixels

	params/
	Parameters used for coherent diffraction
	
	

	params/info
	Input for orientation determination program and version
	String
	

	history/
	Information about input data
	
	

	info/
	Information
	
	

	misc/
	Miscellaneous information
	
	

	version
	hdf5 format version
	Float
	0.1

Diagnostics of reconstructed 3D diffraction volume

EMC reconstruction parameters..

[image: ../_images/orient_2015_01_28_21_00_34.png]

 Copyright 2015, Chunhong Yoon.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	simS2E 0.0.1 documentation

 [image: ../_images/protein_rsz.png]

Phasing

Input/Output data description

The input/output data is expected in hdf5 format, and the glossary can be found below. Phasing module is responsible for reading in and writing out in the format specified below.

phase_out_<7 digit ID>.h5 (Output HDF glossary)

	Field name
	Description
	Data type
	Units

	data/
	
	
	

	data/electronDensity
	Recovered electron density volume in 3D array (dimX x dimY x dimZ)
	Float
	

	params/
	
	
	

	params/info
	Input for phasing program and version
	String
	

	history/
	Information about input data
	
	

	info/
	Information
	
	

	misc/
	Miscellaneous information
	
	

	version
	hdf5 format version
	Float
	0.1

 Copyright 2015, Chunhong Yoon.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	simS2E 0.0.1 documentation

Index

 Copyright 2015, Chunhong Yoon.
 Created using Sphinx 1.3.5.

 _static/down.png

_static/up.png

_images/orient_2015_01_28_21_00_34.png
°

38!

o ‘ o o o o o o
o |@@@@'@@"°
d
o ‘ o o o o o o e
o] o o o o o o 48
o } o o o o o o -2
o ‘ o o o o o © s
o] o o o o o o 6o
-19 0 19 -19 0 19 -19 0 19 -19 0 19 -19 0 19 -19 0 19 -19 0 19 -19 0 19

log10(intensities)

_static/up-pressed.png

_images/undulator_rsz.png

_images/diffrVol_rsz.png

_images/protein_rsz.png

_images/pmi_rsz.png

_images/detector_rsz.png

_images/singfel_speed.png
caloulation tine (sec)

EY

=

Calculation tine us Nunber of atons

500

1000

1500 2000 200 3000 3500
number of atoms

4000

4500

5000

_static/comment-close.png

ipython_directive.html

 Navigation

 		
 index

 		simS2E 0.0.1 documentation »

Ipython Directive

The ipython directive is a stateful ipython shell for embedding in
sphinx documents. It knows about standard ipython prompts, and
extracts the input and output lines. These prompts will be renumbered
starting at 1. The inputs will be fed to an embedded ipython
interpreter and the outputs from that interpreter will be inserted as
well. For example, code blocks like the following:

.. ipython::

 In [136]: x = 2

 In [137]: x**3
 Out[137]: 8

will be rendered as

Note

This tutorial should be read side-by-side with the Sphinc source
for this document (see Sphinx source for this tutorial) because otherwise
you will see only the rendered output and not the code that
generated it. Excepting the example above, we will not in general
be showing the liuteral rest in this document that generates the
rendered output.

The state from previous sessions is stored, and standard error is
trapped. At doc build time, ipython’s output and std err will be
inserted, and prompts will be renumbered. So the prompt below should
be renumbered in the rendered docs, and pick up where the block above
left off.

The embedded interpreter supports some limited markup. For example,
you can put comments in your ipython sessions, which are reported
verbatim. There are some handy “pseudo-decorators” that let you
doctest the output. The inputs are fed to an embedded ipython
session and the outputs from the ipython session are inserted into
your doc. If the output in your doc and in the ipython session don’t
match on a doctest assertion, an error will be

Multi-line input is supported.

‘f=2009’, ‘g=d’, ‘a=1’, ‘b=8’, ‘c=2006’, ‘ignore=.csv’]

In [60]: import urllib

You can do doctesting on multi-line output as well. Just be careful
when using non-deterministic inputs like random numbers in the ipython
directive, because your inputs are ruin through a live interpreter, so
if you are doctesting random output you will get an error. Here we
“seed” the random number generator for deterministic output, and we
suppress the seed line so it doesn’t show up in the rendered output

Another demonstration of multi-line input and output

Most of the “pseudo-decorators” can be used an options to ipython
mode. For example, to setup matplotlib pylab but suppress the output,
you can do. When using the matplotlib use directive, it should
occur before any import of pylab. This will not show up in the
rendered docs, but the commands will be executed in the embedded
interpreter and subsequent line numbers will be incremented to reflect
the inputs:

.. ipython::
 :suppress:

 In [144]: from pylab import *

 In [145]: ion()

Likewise, you can set :doctest: or :verbatim: to apply these
settings to the entire block. For example,

You can create one or more pyplot plots and insert them with the
@savefig decorator.

In a subsequent session, we can update the current figure with some
text, and then resave

Pseudo-Decorators

Here are the supported decorators, and any optional arguments they
take. Some of the decorators can be used as options to the entire
block (eg verbatim and suppress), and some only apply to the
line just below them (eg savefig).

@suppress

execute the ipython input block, but suppress the input and output
block from the rendered output. Also, can be applied to the entire
..ipython block as a directive option with :suppress:.

@verbatim

insert the input and output block in verbatim, but auto-increment
the line numbers. Internally, the interpreter will be fed an empty
string, so it is a no-op that keeps line numbering consistent.
Also, can be applied to the entire ..ipython block as a
directive option with :verbatim:.

@savefig OUTFILE [IMAGE_OPTIONS]

save the figure to the static directory and insert it into the
document, possibly binding it into a minipage and/or putting
code/figure label/references to associate the code and the
figure. Takes args to pass to the image directive (scale,
width, etc can be kwargs); see image options [http://docutils.sourceforge.net/docs/ref/rst/directives.html#image]
for details.

@doctest

Compare the pasted in output in the ipython block with the output
generated at doc build time, and raise errors if they don’t
match. Also, can be applied to the entire ..ipython block as a
directive option with :doctest:.

Sphinx source for this tutorial

.. _ipython_directive:

=================
Ipython Directive
=================

The ipython directive is a stateful ipython shell for embedding in
sphinx documents. It knows about standard ipython prompts, and
extracts the input and output lines. These prompts will be renumbered
starting at ``1``. The inputs will be fed to an embedded ipython
interpreter and the outputs from that interpreter will be inserted as
well. For example, code blocks like the following::

 .. ipython::

 In [136]: x = 2

 In [137]: x**3
 Out[137]: 8

will be rendered as

.. ipython::

 In [136]: x = 2

 In [137]: x**3
 Out[137]: 8

.. note::

 This tutorial should be read side-by-side with the Sphinc source
 for this document (see :ref:`ipython_literal`) because otherwise
 you will see only the rendered output and not the code that
 generated it. Excepting the example above, we will not in general
 be showing the liuteral rest in this document that generates the
 rendered output.

The state from previous sessions is stored, and standard error is
trapped. At doc build time, ipython's output and std err will be
inserted, and prompts will be renumbered. So the prompt below should
be renumbered in the rendered docs, and pick up where the block above
left off.

.. ipython::

 In [138]: z = x*3 # x is recalled from previous block

 In [139]: z
 Out[139]: 6

 In [140]: print z
 --------> print(z)
 6

 In [141]: q = z[) # this is a syntax error -- we trap ipy exceptions
 --
 File "<ipython console>", line 1
 q = z[) # this is a syntax error -- we trap ipy exceptions
	 ^
 SyntaxError: invalid syntax

The embedded interpreter supports some limited markup. For example,
you can put comments in your ipython sessions, which are reported
verbatim. There are some handy "pseudo-decorators" that let you
doctest the output. The inputs are fed to an embedded ipython
session and the outputs from the ipython session are inserted into
your doc. If the output in your doc and in the ipython session don't
match on a doctest assertion, an error will be

.. ipython::

 In [1]: x = 'hello world'

 # this will raise an error if the ipython output is different
 @doctest
 In [2]: x.upper()
 Out[2]: 'HELLO WORLD'

 # some readline features cannot be supported, so we allow
 # "verbatim" blocks, which are dumped in verbatim except prompts
 # are continuously numbered
 @verbatim
 In [3]: x.st<TAB>
 x.startswith x.strip

Multi-line input is supported.

.. ipython::

 In [130]: url = 'http://ichart.finance.yahoo.com/table.csv?s=CROX\
 : &d=9&e=22&f=2009&g=d&a=1&br=8&c=2006&ignore=.csv'

 In [131]: print url.split('&')
 --------> print(url.split('&'))
 ['http://ichart.finance.yahoo.com/table.csv?s=CROX', 'd=9', 'e=22',
'f=2009', 'g=d', 'a=1', 'b=8', 'c=2006', 'ignore=.csv']

 In [60]: import urllib

You can do doctesting on multi-line output as well. Just be careful
when using non-deterministic inputs like random numbers in the ipython
directive, because your inputs are ruin through a live interpreter, so
if you are doctesting random output you will get an error. Here we
"seed" the random number generator for deterministic output, and we
suppress the seed line so it doesn't show up in the rendered output

.. ipython::

 In [133]: import numpy.random

 @suppress
 In [134]: numpy.random.seed(2358)

 @doctest
 In [135]: numpy.random.rand(10,2)
 Out[135]:
 array([[0.64524308, 0.59943846],
	 [0.47102322, 0.8715456],
	 [0.29370834, 0.74776844],
	 [0.99539577, 0.1313423],
	 [0.16250302, 0.21103583],
	 [0.81626524, 0.1312433],
	 [0.67338089, 0.72302393],
	 [0.7566368 , 0.07033696],
	 [0.22591016, 0.77731835],
	 [0.0072729 , 0.34273127]])

Another demonstration of multi-line input and output

.. ipython::

 In [106]: print x
 --------> print(x)
 jdh

 In [109]: for i in range(10):
 : print i
 :
 :
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Most of the "pseudo-decorators" can be used an options to ipython
mode. For example, to setup matplotlib pylab but suppress the output,
you can do. When using the matplotlib ``use`` directive, it should
occur before any import of pylab. This will not show up in the
rendered docs, but the commands will be executed in the embedded
interpreter and subsequent line numbers will be incremented to reflect
the inputs::

 .. ipython::
 :suppress:

 In [144]: from pylab import *

 In [145]: ion()

.. ipython::
 :suppress:

 In [144]: from pylab import *

 In [145]: ion()

Likewise, you can set ``:doctest:`` or ``:verbatim:`` to apply these
settings to the entire block. For example,

.. ipython::
 :verbatim:

 In [9]: cd mpl/examples/
 /home/jdhunter/mpl/examples

 In [10]: pwd
 Out[10]: '/home/jdhunter/mpl/examples'

 In [14]: cd mpl/examples/<TAB>
 mpl/examples/animation/ mpl/examples/misc/
 mpl/examples/api/ mpl/examples/mplot3d/
 mpl/examples/axes_grid/ mpl/examples/pylab_examples/
 mpl/examples/event_handling/ mpl/examples/widgets

 In [14]: cd mpl/examples/widgets/
 /home/jdhunter/mpl/examples/widgets

 In [15]: !wc *
 2 12 77 README.txt
 40 97 884 buttons.py
 26 90 712 check_buttons.py
 19 52 416 cursor.py
 180 404 4882 menu.py
 16 45 337 multicursor.py
 36 106 916 radio_buttons.py
 48 226 2082 rectangle_selector.py
 43 118 1063 slider_demo.py
 40 124 1088 span_selector.py
 450 1274 12457 total

You can create one or more pyplot plots and insert them with the
``@savefig`` decorator.

.. ipython::

 @savefig plot_simple.png width=4in
 In [151]: plot([1,2,3]);

 # use a semicolon to suppress the output
 @savefig hist_simple.png width=4in
 In [151]: hist(np.random.randn(10000), 100);

In a subsequent session, we can update the current figure with some
text, and then resave

.. ipython::

 In [151]: ylabel('number')

 In [152]: title('normal distribution')

 @savefig hist_with_text.png width=4in
 In [153]: grid(True)

Pseudo-Decorators
=================

Here are the supported decorators, and any optional arguments they
take. Some of the decorators can be used as options to the entire
block (eg ``verbatim`` and ``suppress``), and some only apply to the
line just below them (eg ``savefig``).

@suppress

 execute the ipython input block, but suppress the input and output
 block from the rendered output. Also, can be applied to the entire
 ``..ipython`` block as a directive option with ``:suppress:``.

@verbatim

 insert the input and output block in verbatim, but auto-increment
 the line numbers. Internally, the interpreter will be fed an empty
 string, so it is a no-op that keeps line numbering consistent.
 Also, can be applied to the entire ``..ipython`` block as a
 directive option with ``:verbatim:``.

@savefig OUTFILE [IMAGE_OPTIONS]

 save the figure to the static directory and insert it into the
 document, possibly binding it into a minipage and/or putting
 code/figure label/references to associate the code and the
 figure. Takes args to pass to the image directive (*scale*,
 width, etc can be kwargs); see `image options
 <http://docutils.sourceforge.net/docs/ref/rst/directives.html#image>`_
 for details.

@doctest

 Compare the pasted in output in the ipython block with the output
 generated at doc build time, and raise errors if they don’t
 match. Also, can be applied to the entire ``..ipython`` block as a
 directive option with ``:doctest:``.

.. _ipython_literal:

Sphinx source for this tutorial
====================================

.. literalinclude:: ipython_directive.rst

 © Copyright 2015, Chunhong Yoon.
 Created using Sphinx 1.3.5.

_static/minus.png

_images/optics.png

_static/comment.png

search.html

 Navigation

 		
 index

 		simS2E 0.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Chunhong Yoon.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

